Отчёт по методической теме 2021-2022 учебного года Марковой Сабины Валерьевны «Использование оборудования для лабораторных работ, полученных по национальному проекту «Образование» на уроках физики и во внеурочной деятельности»

План работы:

- 1. Изучить спектр демонстраций и лабораторных работ, которые можно провести с использованием оборудования, полученного по национальному проекту «Образование».
- 2. Включить демонстрации и лабораторные работы, которые можно провести с использованием оборудования, полученного по национальному проекту «Образование» в рабочие программы по физике 7-9.2 классов и программы внеурочной деятельности 7, 8 классов.
- 3. Провести для учащихся вводные занятия по изучению оборудования, полученного по национальному проекту «Образование» и технике безопасности по работе с ним.
- 4. Провести уроки и внеурочные занятия с демонстрациями и лабораторными работами с использованием оборудования, полученного по национальному проекту «Образование». Создать учащимся условия для проведения опытов, умозаключений и выводов о физических явлениях, которые демонстрируются оборудованием.
- 5. Провести проверку отчётов учащихся, рефлексию и работу над ошибками.

Результаты работы:

Оборудование, полученного по национальному проекту «Образование», позволяет учащимся 7-9.2 классов более глубоко изучить на практике физические явления и закономерности, изучаемые в курсе физики 7-9 классов и самостоятельно провести опыты и измерения, сделать выводы по результатам лабораторных работ. Ребята с большим удовольствием и мотивацией работают с приборами, глубже понимают изучаемые темы и лучше запоминают материал.

Примеры лабораторных работ, проведённых с использованием оборудования, полученного по национальному проекту «Образование».

1. На уроках физики Фрагмент рабочей программы по физике для 7 класса.

	Земли				_
38	Измерение атмосферного давления. Опыт Торричелли.	02.02	02.02	04.00	000
39	Барометр-анероид. Атмосферное давление на различных высотах. Манометры.	07.02		0.1102	04.0
40	Поршневой жидкостный насос.	09.02		09.02	09.0
41	Гидравлический пресс.		09.02	11.02	11.0
42	Решение задач по теме «Гидр авлический пресс»	14.02	14.02	16.02	16.0
43	Действие жидкости и газа на погружённое в них тело. Закон Архимеда. Архимедова сила.	16.02	21.02	18.02	25.0
44	Плавание тел	29.02	0 2 00	02.02	-
45	Плавание судов	28.02	28.02	02.03	02.0
46	Воздухоплавание	02.03	02.03	04.03	04.0
47	Повторение. Подготовка к контрольной работе.	05.03	05.03	09.03	09.0
48	Проверочная работа №3 по теме «Давление твёрдых тел, жидкостей и газов»	09.03	09.03	11.03	11.0
49	Давление твердых тел, жидкостей и газов. Повторение.		14.03	16.03	16.0
	Работа и мощность. Энергия.	16.03	16.03	18.03	18.0
50	Механическая работа	21.02			
51	Мощность	21.03	21.03		23.03
52	Простые механизмы.	23.03	23.03	06.04	06.04
53	D	04.04	04.04		08.04
54	Правило моментор		06.04		13.04
55	Блок.	11.04	11.04	15.04	20.0
56	2	13.04	13.04	20.04	120.0
57	KILL	18.04	18.04	22.04	22.0
58	Решение задач на тему «КПД»		20.04	27.04	27.0
59	Кинетическая и потенциальная энергия		25.09	29.04	29.04
60	Превращение эпертий Рамания эпертия	27.04	27.04	04.05	04.05
51	Превращение энергий. Решение задач. Подготовка к проверочной работе.	04.05	04.05	06.05	06.05
31	Проверочная работа №4 по теме: «Работа, мощность, энергия»	11.05	11.05	11.05	11.03

Урок 53, тема «Рычаг»

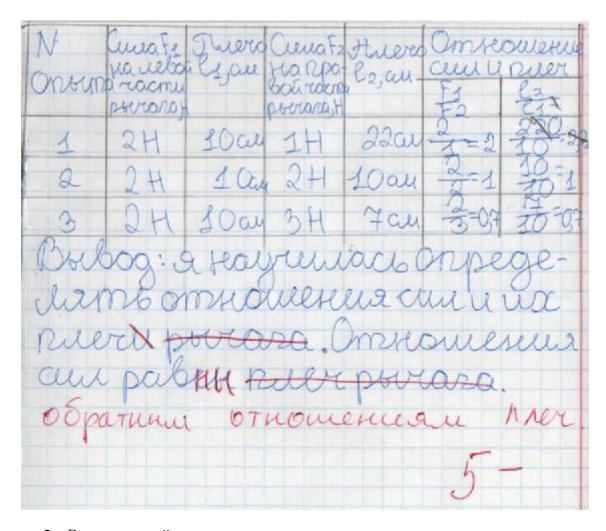
Лабораторная работа: «Выяснение условия равновесия рычага», набор «Механика», национальный проект «Образование»

3. Выяснение условия равновесия рычага

Оборудование: • штатив с муфтой • рычаг • набор грузов • линейка • крючок — 2 шт.

Выполнение работы:

- 1. Повторите основные сведения о рычаге и определение плеча силы.
- 2. Муфту рычага закрепите на стержне на высоте около 40 см от поверхности стола.
- Вставьте винт рычага в отверстие рычага и закрепите его в муфте.
 Убедитесь в том, что рычаг может вращаться вокруг оси без заметного трения.
- 4. Вращая балансировочные грузы на концах рычага, найдите такое положение, при котором рычаг располагался бы на оси горизонтально.
- 5. Для записи результатов измерений и вычислений подготовьте таблицу:


№ опыта	F_b H	l_i , cm	F ₂ , H	l ₂ , cm	F/F 12	1/121
Violent III		a month	n bereit		E STATE	TE KUP

В таблице обозначено:

- F_{I} -сила, стремящаяся вращать рычаг против часовой стрелки;
- F_2 -сила, стремящаяся вращать рычаг по часовой стрелке;
- l_I -плечо силы F_I ;
- l_2 -плечо силы F_2 .
- 6. К правой части рычага подвесьте два груза, на расстоянии 10 см. от оси.
- К левой части рычага подвесьте один груз. Место подвески этого груза определите экспериментально так, чтобы рычаг сохранил равновесие.
- 8. С помощью линейки измерьте плечи сил.
- Занесите данные первого опыта в первую строчку таблицы. При этом нужно учесть, что вес каждого груза составляет примерно 1Н.
- Повторите опыт, оставив без изменения плечо и величину силы, приложенной к рычагу справа. К левой части рычага подвесьте два груза, выбрав место их подвески так, чтобы равновесие рычага сохранилось.
- Определите плечи и величины сил, приложенных к рычагу в этом опыте.
 Данные занесите во вторую строчку таблицы.
- 12. К правой части рычага на расстоянии 10 см. от оси подвесьте три груза. К левой части рычага подвесьте один груз, выбрав место его подвески так, чтобы равновесие рычага сохранилось.
- Определите плечи и величины сил, приложенных к рычагу в третьем опыте. Данные занесите в третью строчку таблицы.
- 14. К правой части рычага на расстоянии 15 см от оси подвесьте один груз. К левой части рычага подвесьте четыре груза, выбрав место их подвески так, чтобы равновесие рычага сохранилось.
- Определите плечи и величины сил, приложенных к рычагу в четвертом опыте. Данные занесите в четвертую строчку таблицы.
- 16.Для каждого опыта вычислите отношение сил F_1/F_2 , прилагавшихся к рычагу и отношение их плеч l_2/l_1 .
- Сделайте вывод о том, в каком отношении должны находиться приложенные к рычагу силы и их плечи, чтобы он находился в равновесии.

Бланк отчёта по лабораторной работе ученика 7 класса

a sopamophare pasomary pabriobecure percara" ils pasoner: Dipobenemi rea orbine repu Karou contro mercan cene a too puter porrar Haroquerrar 6 pabrobecine Fro beguns na on sime republic mouleumob. Osopyosoloanue: pourar rea umamube, Hadop ppysob, Mulepumentian whenka quecellowerp. Log padomy:

2. Во внеурочной деятельности

Рабочая программа внеурочной деятельности «Наука в задачах и экспериментах» для 8 класса

Календарно - тематическое планирование.

№	Тема занятия	Коли- чество	В том числе		8 А, дата	8 Б, дата	
		часов	пра- кти- ка	тео- рия			
	Тепловые явления.	9					
1	Введение. Правила по ТБ. Урок знакомства	1		1	06.09	02.09	
2	Здравствуй, физика теплоты!	1		1	13.09	09.09	
3	Закон сохранения энергии на экспериментальных задачах.	1	1		20.09	16.09	
4	Определение количества теплоты, отдаваемой и получаемой при смешивании	1	1		27.09	23.09	
5	Теплоемкость твердых тел и жидкостей,	1	0,5	0,5	04.10	30.09	
6	Особенности физических характеристик воды.	1		1	11.10	07.10	
7	Наблюдение за процессом кипения и температурой кипения воды.	1	0,5	0,5	18.10	14.10	
8	Зависимость состояния вещества от температуры и давления.	1		1	08.11	21.10	
лект	грические явления	15					
9	Электризация тел: польза или вред?	1		1	15.11	11.11	
10	Осветительная сеть. Решение задач по составлению схем различных устройств.	1		1	22.11	18.11	
11	Схемы различных устройств (в быту, в промышленности, в игрушках и играх).	2	2		29.11 06.12	25.11 02.12	
13	Измерение силы тока в различных участках цепи (НП)	1	1		13.12	09.12	
14	Измерение напряжения в различных участках цепи (HI)	1	1		20.12	16.12	
15	Измерение сопротивления проводника с помощью амперметра (HT)	1	1		27.12	23.12	

Лабораторная работа: «Сборка электрической цепи и измерение силы тока на её различных участках», набор «Электродинамика», национальный проект «Образование»

Работа 1. Сборка электрической цепи и измерение силы тока на ее различных участках

Цель работы: формирование умений монтажа электрических цепей и измерения силы тока амперметром.

Оборудование: выпрямитель, амперметр, соединительные провода, элементы планшета: резистор R₁ переменный резистор R_П, ключ.

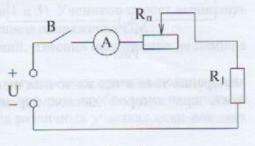
Работа открывает цикл занятий, на которых будет происходить формирование и развитие важнейших экспериментальных умений школьников, связанных с монтажом электрических цепей, их настройкой и использованием электроприборов. Подобные умения окажутся необходимы ученикам не только при выполнении практических работ по физике, для многих из них они будут полезными в последующей профессиональной деятельности, а также и в быту.

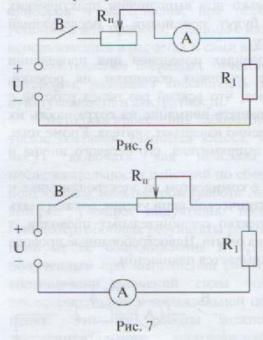
Занятие начинают вводной беседой о правилах поведения при проведении опытов с электрическими цепями. Внимание учеников обращают на розетки, закрепленные на их рабочих столах, подчеркивая, что всякий раз перед работой с электросетью кабинета физики они должны обращать внимание на сохранность их корпуса. О повреждении корпуса розетки немедленно извещают учителя. Кроме того, необходимо следить за сохранностью корпуса выпрямителя, его сетевого шнура и вилки.

Затем переходят к ознакомлению учеников с комплектом по электродинамике и правилами обращения с ним. Перед сборкой электрической цепи ученик должен взять из ложемента под планшетом требуемое количество соединительных проводов, а также другие детали, необходимые для проведения опыта. Невостребованные провода и детали возвращаются в отсек, после чего он закрывается планшетом.

После этого объявляют цель лабораторной работы и поясняют, что необходимо собрать электрическую цепь, схема которой показана на рис.5 (большинство элементов этой схемы закреплено на планшете).

Ученикам предлагают внимательно рассмотреть планшет и определить, какие элементы электрических цепей на нем представлены. Указывают на то, что ключ В перед сборкой цепи необходимо разомкнуть.




Рис. 5

Обращают внимание на устройство переменного резистора R_П и поясняют, что средний вывод этого резистора соединен с его подвижным контактом, перемещая который можно менять электрическое сопротивление между средним и крайними выводами. Поясняют, что гнезда, расположенные рядом с каждым из элементов, используют для подключения этого элемента в цепь.

Затем отрабатывают действия по подключению выпрямителя к электросети класса. Учеников просят рассмотреть корпус выпрямителя и объяснить смысл знаков «+» и «-», нанесенных на его верхней панели рядом с гнездами. Ученики выполняют пробное подключение выпрямителя к электросети и убеждаются, что сразу после подключения вилки к розетке, загорается индикаторная лампочка на его корпусе.

Свечение этой лампы указывает на то, что гнезда выпрямителя находятся под напряжением. Если после подключения вилки лампа не загорелась, необходимо обратиться к учителю. Поясняют, что выпрямитель подключают к электросети только после того, как электрическая цепь полностью собрана и проверена учителем. Сразу после завершения опыта источник необходимо отключить от электросети.

Отработав действия с выпрямителем, переходят к знакомству с лабораторным амперметром. Объясняют значение знаков, нанесенных на корпусе рядом с клеммами на шкале прибора. Клемма красного цвета, помеченная знаком «+», должна подключаться к тому участку цепи, который соединен с положительным полюсом выпрямителя. Рассматривают шкалу амперметра, определяют и записывают в лабораторную тетрадь цену ее деления. Определяют, в каких единицах измеряет прибор силу тока, каково максимальное значение силы тока, которое может измерить данный прибор.

Затем ученики приступают к сборке электрической цепи. Движок переменного резистора им предлагают перевести в одно из крайних положений. После проверки собранной цепи, они подключают выпрямитель к розетке и, убедившись в наличии напряжения на его гнездах, замыкают ключ, определяют и записывают показание амперметра. После чего им предлагается разомкнуть ключ и изменить электрическую цепь так, чтобы измерить силу тока на участке между резистором и переменным резистором (рис.6), а потом между резистором и выпрямителем (рис.7).

Ученики сравнивают результаты трех измерений и делают вывод о том, как соотносятся значения тока на различных участках последовательной цепи.

Потом движок переменного резистора переводят в среднее положение и повторяют

измерения тока в тех же точках цепи. Завершается работа третьей серией измерений тока, при которой движок переменного резистора переводят в другое крайнее положение.

Бланк отчёта по лабораторной работе ученика 8 класса

Ed Nadopamophan padoma NY Cooppa Ziekmpurecken isenu и измерение сим тока в её разминик участках. Gert: Idegumsea na anume, uno cuia mora l paziarres noclegisamentes coequirennux участках цепи одинакова Jospygstakue: Ucmornun numanus Huzkotalsmean lama на под conatre, Kuter, aunequemp, coe динительные провода. y=0,65 A

Bulog: Cura mora l pagurina nocregolamensus coegunénum yracmnan yenn ogunanoba, m. n. be yracmnu padomanom manne zagrenmulno l pazurn neeman,